The objective of this screening is to identify genotypes with effective resistance genes against leaf blast. Two hundred rice accessions were collected in Benin's production areas and screened in upland ecology at Sowe (Glazoue, Benin). The experimental device used is an Alpha lattice 20 x 10 with 3 repetitions. The hierarchical ascending classification (HAC) allowed obtaining three large groups of accessions according to their behavior in relation to the populations of Magnaporthe oryzae present on the site: the C1 group composed of resistant genotypes (R), the group C2 composed of genotypes moderately sensitive (MS) and finally the group C3 that consists of sensitive genotypes (S). A highly significant difference was observed between genotypes based on recorded severity scores (five rating stages of disease and the AUDPC or Area Under the Disease Progress Curve). In general, the difference between the phenotypic variable (VP) and the genotypic variable (Vg) is relatively weak for all characters. All the traits studied had recorded high genotypic variation coefficients (GVC) and phenotypic variation coefficients (PVC) (> 20), with the exception of the first level of disease severity (Pyri1), thus justifying the high variability between genotypes with respect to resistance to disease. Heritability rate (H2%) coupled with high values of expected genetic gain compared to the mean (EGGM), indicated a low environmental influence in disease expression and a prevalence of the effect of additive genes in genetic determinism. The experiment has identified a pool of varieties with good behavior against blast disease that can be used as genetic control material in research and breeding programs in Benin.
Published in | Journal of Diseases and Medicinal Plants (Volume 4, Issue 3) |
DOI | 10.11648/j.jdmp.20180403.12 |
Page(s) | 69-79 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2018. Published by Science Publishing Group |
Oryza Spp, Rice Blast, Genetic Control, Magnaporthe Oryzae
[1] | MAEP (2016). Plan Stratégique de Développement Agricole. Rapport technique, 76p. |
[2] | Konnon, D., C. S. Sotondji, and Y. A. Adidehou (2014). Rapport de l’étude d’état des lieux de la filière riz au Bénin en 2014. Rapport final, CCR-B, Bohicon, p. 88. |
[3] | SNDR (2011). Stratégie Nationale pour le Développement de l’Agriculture au Bénin (SNDR). SGM/MAEP/Bénin, p. 30. |
[4] | Balaro, G., B. G. Soule, and S. Gansari (2008). Analyse des politiques et stratégies mises en œuvre par l’état dans la filière riz depuis 2008. Rapport technique, p. 22. |
[5] | Adégbola, Y. P., N. R. Ahoyo Adjovi, C. M. Allagbe, A. P. F. Houssou, A. Bankole, S. J. Djidonou, C. E. Kogbeto, B. L. Koumassa, C. T. B. Oussou, C. Akakpo, E. M. Guedou, C. L. Hinnou, S. C. B. Pomalegni, A. Adjanohoun, A. M. Igue, and G. A. Mensah (2014). Synthèse bibliographique des travaux effectués sur le riz et la riziculture au Bénin. Document Technique et d’Informations. Dépôt légal N° 7513 du 15 octobre 2014, 4ème trimestre, Bibliothèque Nationale (BN) du Bénin, p. 412. |
[6] | Idowu, O. O., A. O. Salami, S. A. Ajayi, R. O. Akinwale, and Y. Sere (2013). Varietal resistance of rice to blast fungus Magnaporthe oryzae at two sites in southwestern Nigeria. African Journal of Biotechnology12 (33), 5173-5182. |
[7] | Sy, A. A., and Y. Séré (1996). Manuel de formation en pathologie du riz. ADRAO. Imprint Design. Royaume-Uni. P. 76. |
[8] | Kaboré, K.B., and M. Sie (2002). Criblage de variétés de riz pluvial et de riz de bas-fond pour leur résistance à la pyriculariose (Magnaporthe grisea) au Burkina Faso. Compte rendu de la seconde revue régionale de la recherche rizicole. ADRAO-Le centre du riz pour l’Afrique. Réseau Ouest et centre Africain du Riz (ROCARIZ), pp. 236-243. |
[9] | Scheuermann, K. K., J. V.Raimondi, R. Marschalek, A. de Andrade, and E. Wickert (2012). Magnaporthe oryzae Genetic Diversity and Its Outcomes on the Search for Durable Resistance. The Molecular Basis of Plant Genetic Diversity, Prof. Mahmut Caliskan (Ed.), InTech, DOI: 10.5772/33479. pp. 321-356. |
[10] | Babujee, L., and S. S. Gnanamanickam (2002). Molecular tools for characterization of rice blast pathogen (Magnaporthe grisea) population and molecular marker-assisted breeding for disease resistance. Current Science 78 (3), 248-257. |
[11] | Abed-Ashtiani, F., J. Kadir, A. Selamat, A. H. Mohd-Hanif, and A. Nasehi (2012). Effect of foliar and root application of silicon against rice blast fungus in MR219 rice variety. The Plant Pathology Journal 28, 164–171. |
[12] | Chadha, S., and T. Gopalakrishna (2005). Retro transposon-microsatellite amplified polymorphism (REMAP) markers for genetic diversity assessment of the rice blast pathogen (Magnaporthe grisea). Genome 48(5), 943-945. |
[13] | Barman, R. S., and B. B. Chattoo (2005). Rice blast fungus sequenced. Current Science 89, 930-931. |
[14] | Séré, Y., A. Onasanya, A. Afolabi, H. D. Mignouna, and K. Akator (2007). Genetic diversity of the blast fungus, Magnaporthe grisea (Hebert) Barr, in Burkina Faso. African Journal of Biotechnology 6, 2568–2577. |
[15] | Couch, B.C., and L. M. Kohn (2002). A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia 94(4), 683–693. |
[16] | Lavanya, B., and S. S. Gnanamanickham (2000). Molecular tools for characterization of rice blast pathogen (Magnaporthe grisea) population and molecular marker-assisted breeding for disease resistance. Current Science 78, 248-257. |
[17] | Tharareu, D. (2008). Génétique des interactions et génétique des populations dans l'interaction entre le riz et le champignon phytopathogène Magnaporthe oryzae. Diplôme d'Habilitation à Diriger des Recherches, Université Montpellier II Sciences et Techniques du Languedoc, p. 46. |
[18] | El Guilli, M., A. Jrifi, J. Milazzo, H. Adreit, M. Ismaili, A. Farih, A. Lyamani, J. L. Notteghem, and D. Tharreau (2002). Evaluation de la résistance à la pyriculariose des variétés de riz utilisées au Maroc. Al Awamia 102, 73-81. |
[19] | CIRAD (2003). La pyriculariose du riz Magnaporthe grisea. L’organisme scientifique français spécialisé en agronomie tropicale. France, p. 3. |
[20] | Bioversity International, IRRI, AfricaRice (2007). Descriptors for wild and cultivated rice (Oryza spp.). Bioversity International, Rome, Italy. International Rice Research Institute, Los Baños, Philippines; WARDA, Africa Rice Center, Cotonou, Benin p.72. |
[21] | Shaner, G., and R. E. Finney(1977). The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology 67, 1051-1056. |
[22] | Kassankogno, A. (2015). Diversité génétique, pathologique de Magnaporthe oryzae (Couch), agent de la pyriculariose du riz au Burkina Faso et au Togo et méthodes de gestion durable de la maladie. Presse Universitaire p. 178. |
[23] | Odjo, T., B. C. Ahohuendo, A. Onasanya, K. Akator, and Y. Séré (2011). Analysis of Magnaporthe oryzae population structure in Benin. African Journal of Agricultural Research 6 (28), 6183-6188. |
[24] | Oerke, E. C. (1996). "Rice blast disease: Edited by R. S. Zeigler, S. A. Leong and P. S. Teng. CAB International, Wallingford, UK, in association with the International Rice Research Institute, Los Banos, Philippines, 199,"Agricultural Systems, Elsevier 51(3), 367-369. |
[25] | Budki, P., S. Rani, and V. Kumar (2012). Persistence of Circ annual Rhythms under Constant Periodic and A periodic Light Conditions: Sex Differences and Relationship with the External Environment. Journal of Experimental Biology (revised) pp. 1-36. |
[26] | Kassankogno, A. I., I. Ouedraogo, A. Saibou, A. Tiendrebeogo, L. S. Ouedraogo, P. Sankara (2016). La pyriculariose du riz causée par Magnaporthe grisea (Hebert) Barr: Distribution géographique et incidence au Togo. Science et technique, Sciences naturelles et agronomie Spécial hors série n2, 25-35. |
[27] | Sabin, K., S. Bijay, B. Amrit, G.D. Raman, S. Bhuwan, N. Priyanka, S. Sundar Man, and G. S. Prasad (2016). Screening of Different Rice Genotypes against (Pyricularia grisea) Sacc. in Natural Epidemic Condition at Seedling Stage in Chitwan, Nepal. Advances in Crop Science and Technology 4, 231. |
[28] | Prajapati, M., C. M. Singh, B. G. Suresh, G. R. Lavanya, and P. Jadhav (2011). Genetic parameters for grain yield and its component characters in rice. Electronic Journal of Plant Breeding 2, 235-238. |
[29] | Balakrishnan, D., S. Robin, R. Rabindran, and A. J. Joel (2016). Molecular and Morphological Characterization of Back Cross Generations for Yield and Blast Resistance in Rice. Journal of Rice Research 4, 169. |
[30] | Bisne, R., A. K. Sarawgi, and S. B. Verulkar (2009). Study of heritability, genetic advance and variability for yield contributing characters in rice. Bangladesh Journal of Agriculture Research 34, 175-179. |
[31] | Beninga, M. B., A. Sangaré, A. S. P. Nguetta, B. I. A. Zoro, and Y. M. Coulibaly (2011). Estimation des paramètres génétiques de quelques descripteurs agro morphologiques chez le mil [Pennisetum glaucum (L.) R. Br.,]. Journal of Applied Biosciences 43, 2891–2898. |
[32] | El Hissewy, A. A., A. El Kady, and E. A. Salem (1997). Breeding for partial resistance to rim blast caused by Pyricularia oryzae Cav, in Egypt. In: Chataigner J. (ed.). Maladies du riz en région méditerranéenne et les possibilités d'amélioration de sa résistance. Montpellier: CIHEAM Cahiers Options Méditerranéennes. 15(3), 55-59. |
[33] | Umesh, H.K. Jaiswal, T. Sravan, S. A. Waza and R. Bhardwaj (2015). Estimation of genetic variability, heritability and genetic advance for yield and quality traits in some indigenous Basmati rice (Oryza sativa L) genotypes. International Journal of Farm Sciences 5(4), 32-40. |
[34] | Sarawgi, A.K., N. K. Rastogi, D. K. Soni (2000). Studies on some quality parameters of indigenous rice in Madhya Pradesh. Annals of Agricultural Research. 21(2), 258-261. |
[35] | Kishore, N.S., T. Srinivas, U. Nagabhushanam, M. Pallavi, Sk. Sameera (2015). Genetic variability, correlation and path analysis for yield and yield components in Promising rice (Oryza sativa L.) genotypes. SAARC Journal of Agriculture 13(1), 99-108. |
APA Style
Akankè Iliyath Bello, Abalo Itolou Kassankogno, Hafiz Adéwalé Salami, Habib Ramanou, Moussa Sié, et al. (2018). Screening of Rice Accessions Resistant to Blast in Benin. Journal of Diseases and Medicinal Plants, 4(3), 69-79. https://doi.org/10.11648/j.jdmp.20180403.12
ACS Style
Akankè Iliyath Bello; Abalo Itolou Kassankogno; Hafiz Adéwalé Salami; Habib Ramanou; Moussa Sié, et al. Screening of Rice Accessions Resistant to Blast in Benin. J. Dis. Med. Plants 2018, 4(3), 69-79. doi: 10.11648/j.jdmp.20180403.12
AMA Style
Akankè Iliyath Bello, Abalo Itolou Kassankogno, Hafiz Adéwalé Salami, Habib Ramanou, Moussa Sié, et al. Screening of Rice Accessions Resistant to Blast in Benin. J Dis Med Plants. 2018;4(3):69-79. doi: 10.11648/j.jdmp.20180403.12
@article{10.11648/j.jdmp.20180403.12, author = {Akankè Iliyath Bello and Abalo Itolou Kassankogno and Hafiz Adéwalé Salami and Habib Ramanou and Moussa Sié and Adolphe Adjanohoun and Clément Agbangla}, title = {Screening of Rice Accessions Resistant to Blast in Benin}, journal = {Journal of Diseases and Medicinal Plants}, volume = {4}, number = {3}, pages = {69-79}, doi = {10.11648/j.jdmp.20180403.12}, url = {https://doi.org/10.11648/j.jdmp.20180403.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.jdmp.20180403.12}, abstract = {The objective of this screening is to identify genotypes with effective resistance genes against leaf blast. Two hundred rice accessions were collected in Benin's production areas and screened in upland ecology at Sowe (Glazoue, Benin). The experimental device used is an Alpha lattice 20 x 10 with 3 repetitions. The hierarchical ascending classification (HAC) allowed obtaining three large groups of accessions according to their behavior in relation to the populations of Magnaporthe oryzae present on the site: the C1 group composed of resistant genotypes (R), the group C2 composed of genotypes moderately sensitive (MS) and finally the group C3 that consists of sensitive genotypes (S). A highly significant difference was observed between genotypes based on recorded severity scores (five rating stages of disease and the AUDPC or Area Under the Disease Progress Curve). In general, the difference between the phenotypic variable (VP) and the genotypic variable (Vg) is relatively weak for all characters. All the traits studied had recorded high genotypic variation coefficients (GVC) and phenotypic variation coefficients (PVC) (> 20), with the exception of the first level of disease severity (Pyri1), thus justifying the high variability between genotypes with respect to resistance to disease. Heritability rate (H2%) coupled with high values of expected genetic gain compared to the mean (EGGM), indicated a low environmental influence in disease expression and a prevalence of the effect of additive genes in genetic determinism. The experiment has identified a pool of varieties with good behavior against blast disease that can be used as genetic control material in research and breeding programs in Benin.}, year = {2018} }
TY - JOUR T1 - Screening of Rice Accessions Resistant to Blast in Benin AU - Akankè Iliyath Bello AU - Abalo Itolou Kassankogno AU - Hafiz Adéwalé Salami AU - Habib Ramanou AU - Moussa Sié AU - Adolphe Adjanohoun AU - Clément Agbangla Y1 - 2018/07/09 PY - 2018 N1 - https://doi.org/10.11648/j.jdmp.20180403.12 DO - 10.11648/j.jdmp.20180403.12 T2 - Journal of Diseases and Medicinal Plants JF - Journal of Diseases and Medicinal Plants JO - Journal of Diseases and Medicinal Plants SP - 69 EP - 79 PB - Science Publishing Group SN - 2469-8210 UR - https://doi.org/10.11648/j.jdmp.20180403.12 AB - The objective of this screening is to identify genotypes with effective resistance genes against leaf blast. Two hundred rice accessions were collected in Benin's production areas and screened in upland ecology at Sowe (Glazoue, Benin). The experimental device used is an Alpha lattice 20 x 10 with 3 repetitions. The hierarchical ascending classification (HAC) allowed obtaining three large groups of accessions according to their behavior in relation to the populations of Magnaporthe oryzae present on the site: the C1 group composed of resistant genotypes (R), the group C2 composed of genotypes moderately sensitive (MS) and finally the group C3 that consists of sensitive genotypes (S). A highly significant difference was observed between genotypes based on recorded severity scores (five rating stages of disease and the AUDPC or Area Under the Disease Progress Curve). In general, the difference between the phenotypic variable (VP) and the genotypic variable (Vg) is relatively weak for all characters. All the traits studied had recorded high genotypic variation coefficients (GVC) and phenotypic variation coefficients (PVC) (> 20), with the exception of the first level of disease severity (Pyri1), thus justifying the high variability between genotypes with respect to resistance to disease. Heritability rate (H2%) coupled with high values of expected genetic gain compared to the mean (EGGM), indicated a low environmental influence in disease expression and a prevalence of the effect of additive genes in genetic determinism. The experiment has identified a pool of varieties with good behavior against blast disease that can be used as genetic control material in research and breeding programs in Benin. VL - 4 IS - 3 ER -